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Abstract—The method of complex potentials is used to obtain an analytical solution for the stresses
in epicycloidal specimens due to point force loading. The solution is used to obtain an analytical
expression for the stress intensity factors of cusp-like cracks in such specimens which can be
considered as a generalization of the well-established concept of Griffith cracks. It is shown that by
suitable positioning of the point forces negative mode 1 stress intensity factors will result. This
illustrates the potential of epicycloid specimens for the determination of fracture properties under
compressive loading where frictional contact of the crack surfaces is a priori avoided. © 1997
Elsevier Science Ltd.

1. EPICYCLOID SPECIMENS AND FRACTURE MECHANICS

In a recent paper by Gao et al. (1997) the potential of epicycloid specimens for experimental
determination of interface fracture properties as well as testing under compressive loading
conditions has been explored. It was demonstrated that epicycloid specimens contain defects
in the form of cusps which can be considered as a generalization of the traditional concept
of a Griffith crack. So far only the effects of thermo-mechanical loads (induced by a “hot
spot” region) have been studied. In the present paper, the concept of epicycloid fracture
specimens will be extended to include the influence of purely mechanical loading by means
of point forces.

The generic mapping of the cycloid family can be written as follows [Bronstein and
Semendjajew (1976) ; Mushkhelishvili (1963)]:

&
2= () =R<<:——
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where z = x-+iy denotes the position vector in the original complex plane, ne IN, 3€[0, 27},
ee[0,1] and p is the radius of the revolving circle. In particular the choice ¢ = 1 leads to
epicycloids exhibiting the characteristic feature of cusp-like cracks. Figure 1(a) shows an
epicycloid with one cusp, i.€. the case where n = 17, which is also known as Pascal’s limagon.
Asindicated in the figure the specimen is subjected to self-equilibrating point forces. Clearly,
this type of loading is analogous to three point bending of a straight bar that contains an
edge crack of the Griffith-type: Fig. 1(b).

The following analysis of the stresses and the stress intensify factors focuses on the
case n =1, i.e. on epicycloid specimens of the Pascal’s limagon type subjected to self-
equilibrating point forces (Fig. 2). However, the analysis will be presented such that it can
easily be extended to cover other cases in which n > 1. It will be shown that the finite

geometry of epicycloid specimens allows to obtain analytical solutions. These can easily be
evaluated numerically even if their explicit mathematical form generally proves to be quite

+ The radius p was chosen to be equal to 1.
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Fig. 1. (a) Epicycloid specimen subjected to point forces vs (b) classical three point bending jig.

Fig. 2. Pascal’s limagon subjected to self-equilibrating point forces in horizontal and vertical
direction.

unwieldy. It should be noted that in contrast to epicycloid specimens the mathematical
expressions for the stress intensity factors of straight notched bending bars are generally
expressed by “empirical formulae” which are based on numerical analyses such as boundary
collocation or finite element methods [Tada er al. (1985)].

2. STRESS ANALYSIS

2.1. A reminder of complex stress analysis
Following the concepts of two-dimensional theory of elasticity in complex variable
notation the resultant force, F, acting on a line, L, can be computed from

F@2) = —ilp(d)+2¢'G)+ ¥ ()i, Vzel, )

where [ ] denotes the increase undergone by the expression in brackets as the point #

passes along the line L from points a to z. Moreover, ¢(z) and y(z) denote the complex
stress potentials of the Mushkhelishvili~Kolosov equations {e.g. Sokolnikoff (1956) ; Mus-
khelishvili (1963)]:
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03— 0y + 210, = 2[29"(2) + ' (2)] (3)

and o, i, je {1,2} are the stresses in rectangular coordinates. In the case of a stress-free
boundary, such as the periphery of the epicycloid specimen shown in Fig. 2, it is necessary
and sufficient that the resultant force, F, vanishes in each and every point, z, on the
periphery. Therefore :

() +zo (2)+ Y (z) =0, Vzel. (4)

2.2. Determination of the stress potentials
Similarly to the procedure presented in the paper by Gao er al. (1997) the stress
potentials, ¢(z) and y(z), are divided into two parts as follows:

?(2) = 9. (2)+05(2), W(2) = Y. @) +(2). ()

The first part, identified by the subscript “co”, refers to the complex potentials that
characterize the stresses produced by point forces in an infinite plane. For a single point
force, (X, Y), located at an arbitrary position z, in the complex plane it can be shown that
[Muskhelishvili (1963), Section 57] :

0. = = Sp P InG=2) 0, ©
and
(X —iT) (X 1 3—4v, plane strain
Vel2) = 27r(—1+131n(2_2°)+ 2n(14x) z—z, o, k= ﬁ;: plane stress @

where ¢, and ¥, refer to functions that are holomorphic near the point z, and v denotes
Poisson’s ratio.

Consequently, for the three point forces shown in Fig. 2. which are located at positions
z4, Zg. @, it can easily be established that:

(c—zo)(z—3¢) . [, z—2z4
LA = nEmE ) Sy 2 ®)
¢ () (z—a)? fooz—z,
and
(z—2z0)(z—Zy) o, =20
»(2)/A = —xlIn —ik =-In —
V(o) (z—a)? fo z—2,
N 2a 5 0 +i£( Z _vzo_) ©)
z—a z—zo I-—1Z, f\e—zo z—1Zo,
with
fe .
:_A T 1
4 2(1+k) (10)

where all holomorphic parts have been neglected.
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The second set of functions in eqn (5), identified by the subscript ““s”, must be chosen
such that eqn (4) is satisfied, i.e.

P2 +20L2) +¥5(2) = — 0. (D) =20 (2) — Y. (2), VzeL. (11)

It is advantageous to evaluate this condition on the unit circle. To this end use is made of
the conformal mapping shown in eqn (1) which for n = 1, ¢ = 1 can be written as follows :

R ,
- 3e=0. (12)

Moreover, since the potentials ¢, and ¥, are analytical within the unit circle they can be
represented by power series as follows

o)=Y anl™, Yo=Y bl (13)
m=1 m=1

if rigid body displacements are ignored. Application of the Cauchy operator:

Ly 0«

— , Yyl <1 14
Q. Tog M (14)

to the left-hand side (LHS) of eqn (11) leads to:7

1 LHSd{ = I Lo
- — = a,, "4+ —an—=(a +2677_
27 Jig=1 {—n m; T e 2( o n)

1 1
= o m+san— “(d1’72+2‘72VI)‘ (15)
2 2

In order to determine the coeflicients @, and a, the Cauchy operator shown in eqn (14)
is now applied to the various terms shown on the right-hand side (RHS) of eqn (11). By
means of Cauchy’s theorem it can be shown that:

1 d¢ 2—n—{)2—n—{ L 2—n={
1t 0. (Ddl | Con=L)@=n—Co) S 20 w0 (16)
A2m Jig-1 {—n Q2—n—a)? Jo 2—=n—05

and similarly

_ 1¢§ 20, @+P N _ | (=L =Lom) . fy 1=Ton
=1

A 2ni {—n (1—an)? S 1=Con
§; (G(L.Lo) +G(L.5) —2G (0 +if/AIG (L) — G(EL.L)D) A amn
=1 —n
where the following contraction has been used
Glnr) = (x—H2—x—1) (18)

(=)=

and quantities {,, o are obtained from eqn (12), i.e.

+see Gao et al. (1997) for further details of the proof for arbitrary values of # and &.
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R, R
Zy = Eéo(z“Co)s a= 5“(2““)- (19

The remaining Cauchy integrals of eqn (17) were solved with Mathematica, by
application of the residue theorem. Next the results shown in eqns (16) and (17) were
expanded in terms of the variable 5 to identify the coefficients A, and A, in the following
series

Vg oRESE_ & 0
AZTCI [Z1=1 C—T’] _':l ,7]-

i

Since the explicit mathematical form of these coefficients is quite unwieldy they will not be
explicitly presented in this paper. However, it should be noted that both coefficients turn
out to be real quantities. By comparison of eqn (20) with eqn (15) the following relations
for the unknown coefficients a; and «, are obtained :

1
a1+§dl—d2 :).1, Clz—ial 212 (21)
from which the real parts can be determined
. 1
Re a, = ).,] +/,2, RC a, = i(Al ‘l‘ 3),2). (22)

In fact, it is sufficient to determine the real parts of these coefficients since their imaginary
parts contribute only to a rigid body rotation which will be suppressed. That is, it will be
assumed that the unknown coeflicients a,, @, are given as follows:

a, =Req, +ilma,, a, =Rea,+ilma,. (23)

Then by insertion into the first of eqn (13) it follows that:

Im
¢S=Reall+illna1%+(a2—i 2"‘):2+a3c3+... 24)

where eqn (12) has been used. Recall the general expression for the rotation, ¢ [e.g.
Muskhelishvili (1963), Section 36] :

14K ¢ -0'@)

2u 21 (25)

where p denotes the shear modulus and it becomes clear that in order to avoid a rigid body
rotation it is required that:

Ima, =0 (26)
and, consequently, by virtue of eqn (21)
Ima, =0. 27

By the combination of eqns (5), (8), (9), (17) and (18) it finally follows for the complex
potential ¢(z):
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1 _ 7 , _r S s o
= o) = ln(n— $o)n _ Co) —-if—}lnn 0 4 eln (1 —nlo) (1 =nly) —ik"élnl*—’]—ti
A (n—0)? S n—"( (1 —na)? fo T=nd,
(G(L) +GEL) —2GE M) +ifAIGCL) -G DA 1 1
- =n —§a1n+ 5(‘11’7“4'2‘12’7)-

(28)

Analogously to the procedure described in Gao er al. (1997) this result can now be used to
retrieve the second potential y(z) directly from eqn (11).

2.3. Stress intensity factors for the cusp in a Pascal’s limagon specimen

The stress intensity factors (SIFs), K; and Kj;, of a cusp in a epicycloid can be
determined from the following asymptotic form for the complex potential [see Gao et al.
(1997)]:

K —iKy = —lim {2/~ 2nz.9'(z.)) 29

where z, denotes a complex vector originating at the tip of the cusp. Performing the limit
yields for an epicycloid specimen of the Pascal’s limagon type

T
K, —iKy = 2\/%,)”(&' =1). (30)

3. RESULTS AND DISCUSSION

Figure 3 presents the SIFs obtained from numerical evaluation of eqns (28) and (30)
for the case f,/f. = 0 for all possible positions z, = x,+1y, of horizontal forces (Fig. 2).
Due to the symmetry of the problem, only a mode I component of the SIFs exist which

was normalized by :
2
=4 |—. (
K, \/; (31)

Two regions of different K-sign are distinctly visible. If the horizontal forces are positioned
toward the interior of the Pascal’s limagon, the SIFs become negative. On the other hand,
if they are located at the outer regions, K| becomes positive. This behavior must be attributed
to the signs of the moments which are exerted on the cusp through the horizontal point
forces. If the two horizontal forces are arranged relatively close to the symmetry line the
resulting moment is negative resulting in closure of the cusp and vice versa. Clearly, negative
and positive regions must be separated by a line of “blind spots” where positioning of
forces results in vanishing SIFs as will be discussed in more detail below.

It should be noted that the SIFs along the symmetry line, i.e. on the real axis z, = x,,
are purely negative. Numerical values can be obtained from the following equationft :

K 1+V 2 "7 ‘
= S0tk —[5 =260+ 21 —K]E2), Lo =1— /1——%"- (32)
Q

1-4

which is valid for arbitrary choice of f,/f.. Figure 4 shows a graphical representation of this
result. It is noteworthy that the SIF goes to minus infinity if point forces move toward the
tip of the cusp and to zero if all horizontal forces meet at {, = —1.

The location and shape of the line of blind spots as well as the size and intensity of the
regions of positive or negative K is affected by the relative strength of point forces in

+ which was obtained through symbolic evaluation of eqns (28) and (30) by means of Mathematica,,.
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Fig. 3. Top and bottom view of SIFs for /,/f, = 0 for all possible positions z, within Pascal’s limagon.
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Fig. 4. Negative SIFs along the axis of symmetry of Pascal’s limagon.

vertical direction, in other words by the factor f,/f,. Figures 5 and 6 show the SIF resulting
from the choice f,/f. = +0.5. As one would expect intuitively positive values of f,/f, reduce
the zone of negative K, and vice versa. This is more closely examined in Fig. 7 in which
lines of blind spots for f,/f, # 0 are juxtaposed to the one for f,/f, = 0. It was mentioned
before and explicitly shown in eqn (32) that the SIF for the point {; = —1=x, = —3Ris
always equal to zero independently of the value chosen for f,/f, = +0.5. In other words,
this point is part of every line of blind spots. However, this is not clearly visible in some of
the pictures shown in Fig. 7 and should be kept in mind.

Figure 8 shows the behavior of SIFs when evaluated along the imaginary axis for
different values of f,/f.. The previous remarks hold accordingly.

Figure 9 presents a device which allows to simply realize three point bending of an
epicycloid specimen of the Pascal’s limagon type: a smooth cylinder, situation (a), or a
wedge, situation (b), are pressed against the cusp. This leads to normal loading conditions
on the surface of the specimen depending upon the diameter, 2r, of the inserted cylinder or
of the angle, «, of the wedge. The SIFs corresponding to this type of loading are shown in
Fig. 10. They were calculated by using the following expression for f,/f.

£ % Im@Gll—1)

fi ¥o Re@oll—=(D) °

o = exp(id) (33)

where the dot refers to differentiation with respect to 3. This equation follows from eqn (1)
forn =1, e = 1 and it guarantees normal loading conditions. Note that for 3 = 60° i.e. for
clamping the epicycloid between two parallel plates, the SIFs change from positive to
negative values. This agrees with intuition as well as with previous remarks according to
which a negative value of f,/f, tends to promote fracture under compression. Furthermore,
it should be noted that the SIFs tend to 4+ oo and - o0 for 3 = 0 and 1207, respectively.
This is not surprising since in the first case a singular force is applied directly at the tip of
the cusp and in the second case loading in vertical direction becomes infinitely large in
order to satisfy eqn (33).

Figure 11 allows to obtain the radius, r of the inserted cylinder shown in Fig. 9 when
normalized by the “epicycloid radius”, R. The viewgraph is a consequence of the following
analytical reaction which results from simple geometrical considerations :

1 -
(sin 3— 2 sin(29) )\/2(] —cos3)

;
R sin 3 —sin(29) (34)

Note that this ratio goes to -+ oc if the angle 3 approaches 60° from below or above, as it
should, since this describes the case of clamping a Pascal’s limagon between two parallel
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Fig. 6. Top and bottom view of SIFs for f,/f. = —0.5 for

all possible positions z, within one half of Pascal’s limagon.
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Fig. 7. Lines of blind spots for f,/f, = +0.5, —0.5, +2.0 and —2.0 in comparison with the line of
blind spots for f,/f, = 0.
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Fig. 8. SIFs along the imaginary axis for f,/f, = +0.5, £ 1.0, +2.0 and 0.0.

plates. Negative values of #/R correspond to pressing the epicycloid onto the inner surface
of a hollow cylinder.

Figure 12 shows the wedge angle, «, of Fig. 9 as a function of the mapping angle 3.
The plot is based on the following relation which, again, can be obtained by geometrical
analysis:

__cos§—cos(29) 33 35
= A 09 2 (33)
Finally, Fig. 13 presents the SIFs obtained for purely horizontal loading of the surface of
an epicycloid specimen of the Pascal’s limacon type, i.c. when f,/f, = 0. Analogously to the
result presented in Fig. 10 for loading conditions normal to the surface the SIFs change
sign at 3 = 60°. However, in contrast to the former results negative SIFs result at angles
smaller than this value and vice versa which also agrees with intuition (negative = closing
bending movements at small angles and positive = opening bending moments for large
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Fig. 9. Realization of a three point bending jig by using epicycloid specimens.
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Fig. 10. SIFs for loading conditions normal to the surface of an epicycloid of the Pascal’s limagon

type.

angles). Furthermore note that the SIF assumes a maximum value at & 105” which can be
interpreted as the optimum of the opening moment.

6. CONCLUSIONS

The intent of this paper is to draw attention to the potential of epicycloid specimens
in fracture mechanics testing. To this end an analytical solution for the stresses in such
specimens is derived, based on complex potential theory and specialized to the case self-
equilibrating point forces applied to an epicycloid of the Pascal’s limagon type. The solution
is used to derive analytical expressions for the mode I stress intensity factor of the cusp-
like crack in that specimen. This solution is numerically evaluated for various position of
the applied point forces. It is demonstrated by the calculated values that strongly negative



216 W. H. Miiller and H. Gao

15 /
| /
0.5
4
0
r/'R
-0.5
-1
15 e
, L /]
0 20 40 g [deg) 60 80 100 120

Fig. 11. Normalized radius, r/R, of the inserted cylinder as a function of mapping angle, 9.
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Fig. 12. Wedge angle. «, as a function of mapping angle, 3.
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Fig. 13. SIFs for horizontal loading conditions on the surface of an epicycloid of the Pascal’s
limagon type.

K;-conditions can be enforced without frictional contact and shear of the crack surfaces
when the point forces take suitable positions.
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